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Abstract 

It is shown that the dynamical consistency requirements of quantum field theory and the 
Lorentz-invariant character of particle kinematics and wave equations are compatible 
with the postulate that physical space is a complex manifold with Euclidean-Gaussian 
measure in the small. Such a postulate for the microstructure of space introduces a 
fundamental length 2(,~ 10 -16 cm) and leads to A-functions that are analytic on the 
light-cone for a free field, and hence to self-energies and renormalization constants that 
are finite for interacting fields. 

It has been realized for many years that there is no compelling reason to 
assume a Minkowskian metric structure for space-time down to arbitrarily 
small distances (Pauli, 1933; Heisenberg, 1938, 1950; Blokhintsev, 1964, 
1965) (less than about 10 -~6 cm), and recent authors (R6idi, 1967; 
Lundberg & R6idi, 1968; Dardo et aL, 1969) have considered the experi- 
mental observation of processes at very high energies that might reveal 
small-scale inhomogeneity and nonisotropy of space-time. Viewed in a 
basic theoretical way, a departure from Minkowskian metric structure in 
the small must admit a formalism that satisfies the rather stringent dynamical 
consistency requirements of quantum field theory and is consonant with 
the experimentally established Lorentz-invariant character of particle 
kinematics and wave equations. The purpose of the present note is to 
describe a simple departure from Minkowskian metric structure that has 
the latter requisite features. Moreover, the space-time microstructure 
examined here leads to A-functions that are analytic on the light-cone for a 
free field, and hence to self-energies and renormalization constants that are 
finite for interacting fields. 

The assumption that space-time is Minkowskian down to arbitrarily 
small distances can be replaced by the following postulate: In a class of 
preferred inertial frames of reference, physical space is a 3-dimensional 
complex manifold with the Euclidean-Gaussian measure 

dV(z) = d3x. (~-3/2 ~-3 e-I y12/~ 2 d 3 y) (1) 
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about the point with complex cartesian coordinates z = x + iy, where J. is a 
fundamental length constant. To illustrate that this postulate is compatible 
with the dynamical consistency requirements of  quantum field theory and 
the Lorentz-invariant  character  of  particle kinematics and wave equations, 
we consider neutral scalar meson theory. The field r  r  is an 
hermitian operator  for real space-time coordinates x = (x ~ x), and thus we 
have r  = r for complex spatial coordinates with z = (x~ + iy). 
In a preference inertial frame the hermitian Lagrangian is thus 

L = -�89 f (0" r 0~, r + m 2 r r dV(z) (2) 

where the infinitesimal spatial volume element is prescribed by (1). Expand- 
ing the field in a Taylor  series in y and performing the y-integration term- 
wise, we obtain 

- �89 f (c~" r  e -:'2v2 O,, O(x) + m 2 r e - : v2  r d 3 x (3) L 

in which V 2 denotes the 3-dimensional Laplacian operator.  The relativistic 
K le in -Gordon  equation 

(0" a,, -- m z) r  = 0 (4) 

follows from (3), but for the Hamil tonian we have 

H = �89 f (re(x) e :v2 ~z(x) + r 2 - V 2) e -~2v2 r  d 3 x (5) 

with the momentum density 

n(x) = e - : v2  Oo r  (6) 

It is readily verified that the Heisenberg equations of  motion for Oo(O(x) 
and 0o z(x), generated by (5) and the canonical commutat ion  relations 

[r r  = 0 : [~(x), ~ ( x ' ) ] : = :  

[r zc(x')Lo=~,o = i6(x -- x') (7) 

are consistent with (4) and (6). F r o m  (6) and (7) we obtain 

[r 0o r  = i(8rc 3/2 23) -~ exp ( - I x  -- x '  ]2/422) (8) 

and hence the general commuta tor  is [~b(x), r  = i A ( x -  x') where 

co  

A(x) = -(2Tc2) -1 f (sin [(k 2 + m2) I/2 x~ sin k[xl)(ex p - 22 k2). 
o 

�9 k(k 2 + mZ) -~n dk (9) 

is an analytic function for all real x, the uni form absolute bound ]A(x)I < 
(4re 2 22) -1 being implied by (9) for  all m 2 >/O. Likewise, with the vacuum state 
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defined as usual through ~(+)(x)[0) = 0, the Feynman causal propagator 
,~F(x - x ' )  =- <OIZ(~(x)~(x'))lO> is given b y  

A r(x) = (2n 2)-1 f (exp [-i(k 2 + m2) ~/2lx~ sin k lx l ) (exp  - ;2  k ' ) .  
0 

�9 Ic(k ~ + m2)-l/~dk (lO) 

an analytic uniformly-bounded function for all real x. Since it follows from 
(4) that the wave function associated with a one-particle state satisfies the 
Klein-Gordon equation, the particle kinematics is in strict accord with 
special relativity. However, for interactions involving the field the propa- 
gator (10) gives rise to transition rate formulas that deviate from the 
customary relativistic forms at very high energies ( ~  2 -x ~ 100 BeV) and to 
self-energies and renormalization constants that are finite. 

Similar formulas are obtained with complex spatial coordinates and the 
Euclidean-Gaussian measure (1) for quantum electrodynamics. In the 
interaction picture and Lorentz gauge, the vector potential for the electro- 
magnetic field satisfies the commutation relation [A~,(x),A,,(x')]= 
igu~,D(x - x') where D(x) follows from (9) by putting m = 0, 

D(x) = ( 8 ~  3/2 ;~lxl) -1 [(exp - (x ~ + I x[)~/4), ~) - (exp - (x ~ - I xl)~/42~)] 
(11) 

while the anticommutator of the electron field is (~,(x), ff(x').] = -i(7~au - m)" 
A ( x -  x') with m set equal to the electron mass in (9). The hermitian 
interaction Lagrangian is prescribed unambiguously as 

ief L , . ~ -  2 ~(z*)~," ~,(~)(A.(z) + A.(z*))dV(z) 

ie f - 2 ~(x)7"(e-~V~A"(x)+A"(x)e-~v~)~(x)d3x (12) 

With self-energies and renormalization constants finite to all orders of 
perturbation theory, the observable predictions of the theory do not 
conflict with existing experiments (Alvensleben etal., 1968) for a value of 
2 ~ 10 -16 cm. 

In summary, the postulate tha t physical space is a complex manifold 
with Euclidean-Gaussian measure in the small is not at variance with the 
dynamical consistency requirements of quantum field theory and the 
Lorentz-invariant character of particle kinematics and wave equations. 
It is noteworthy that a modified version of the postulate, with the (normally- 
distributed random-variable) Gaussian weight function for y in (1) replaced 
by some other form, would likewise be compatible with the established 
features of quantum field theory. Although many extensions of quantum 
field theory are possible if Lorentz invariance is relaxed in the small, the 
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geometrical theory described here is particularly simple and gives rise to a 
remarkably  neat modification of ' the existing formalism. 
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